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Control of chaos by capture and release

John Starrett
Department of Mathematics, University of Colorado at Denver, Denver, Colorado 80211

~Received 16 July 2002; revised manuscript received 18 February 2003; published 28 May 2003!

We propose and demonstrate a different method for the control of flip saddles in dissipative chaotic systems.
Due to the dynamics of a flip saddle, the stable manifolds of a target orbit and its perturbation can be modeled
as a pair of concentric Mo¨bius bands. Over the period of the target orbit, these bands rotate relative to one
another. The method of capture and release~CR! takes advantage of this rotation, and captures a nearby system
state in the perturbed stable manifold, releasing it when the rotation of the Mo¨bius bands brings them into
alignment. Unlike the method of Ott, Grebogi, and Yorke and most of its variants, CR does not rely on the
unstable component of the flow to push the system state onto the stable manifold; the system state is evolving
in a stable subspace for the duration of the control perturbation.

DOI: 10.1103/PhysRevE.67.056221 PACS number~s!: 05.45.Gg
lifi
v
th
d
to
b

ro

n

f t

th
u
f

dle
m
y
n-
n
-
u
o
n

bo
th
fo

t
th

oo
ba
tr

e of

of
tate
rol
te at

s di-
the

the
the
ed-

ics
the

se,
f
bits

se
r of
flips
ani-

is

re.
ven
In
ne

vo-
its
Since the 1990 paper of Ott, Grebogi, and Yorke~OGY!
@1# on model independent chaos control, numerous simp
cations, variations, and extensions have appeared. O
whelmingly, these methods rely on the expanding part of
dynamics to push a system state onto the stable manifol
a target orbit, after which the contracting part draws it in
the target. The low-dimensional control scheme proposed
Ott et al. spawned many variations. We now have cont
methods for high-dimensional systems@2–4#, spatiotemporal
systems@5–7#, systems using time-delay coordinates@8,9#,
systems with multiple parameters@10,11#, and systems with
no accessible control parameter@12,13#. Most of these meth-
ods will work for simple saddles~eigenvalues greater tha
zero! and flip saddles~eigenvalues less than zero!. An inter-
esting subclass of these controllers relies on the nature o
flip saddle for their success. Because of the Mo¨bius band
structure of the manifolds associated with a flip saddle,
relationship of the perturbed and unperturbed manifolds d
ing the course of an orbit is more complicated than that o
simple saddle.

Control methods relying on the nature of the flip sad
dynamics are for the most part realized in continuous ti
systems, and have been very successful in controlling ph
cal systems@14–16#, especially those where a model is u
available and the location of periodic orbits is unknow
Pyragas@17# proposed a method~time-delayed autosynchro
nization! for continuous systems that synchronized the c
rent state with the state delayed by one period, and Soc
et al. @18# improved on this method by including informatio
about the system state over several previous cycles~extended
time-delayed autosynchronization!. The general method is
known as time-delayed feedback@19–21#.

A phase-space picture of a system state in the neigh
hood of a flip orbit would reveal a roughly spiral path bo
approaching and departing the area of the saddle. There
the distances between a system statex(t) at time t and the
statex(t2T) at timet2T, whereT is the period of the targe
orbit, will decrease or increase depending on whether
system state is approaching or departing the neighborh
An effective controller should decrease the level of pertur
tion as this distance diminishes, so we expect that the con
1063-651X/2003/67~5!/056221~5!/$20.00 67 0562
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perturbationdr would be proportional tos. It is easy to see
that time-delayed feedback relies on the alternating natur
a flip orbit.

In contrast to the continuous parameter dependence
time-delayed feedback on the distance from the system s
to the target state, OGY-type controls apply a fixed cont
perturbation based on the measurement of the system sta
a surface of section~SOS! map. Most OGY-type controls are
two-step processes. In the first step, the system state i
rected to the stable manifold of the target orbit using
unstable dynamics of a perturbation. In the second step,
controller is turned off and the system state evolves under
stable dynamics to the target. Whereas time-delayed fe
back controls, like other OGY variants, rely on the dynam
of the unstable direction to nudge the system state onto
target orbit or its stable manifold, the method we propo
capture and release~CR!, uses only the relative rotation o
the stable manifolds of the perturbed and unperturbed or
as the initial step to gain control.

I. BASIC GEOMETRY OF FLIP SADDLES

Flip orbits are continuous periodic saddle orbits who
local stable and unstable manifolds have an odd numbe
twists, so that at the surface of section the system state
from one side to another of the stable and unstable m
folds. For a period-one orbit, these manifolds are Mo¨bius
bands. While in the strictest sense a Mo¨bius band isI 3S1,
an interval crossed with a circle with a half twist, th
method will work ~with obvious modifications! on systems
whose saddles have manifolds with one-half twist or mo
Thus, nonflip saddle orbits whose manifolds undergo an e
number of twists can also be controlled by our method.
this paper, however, all the analysis and control will be do
on a period-one flip orbit.

II. ORGANIZATION OF THE PAPER

This paper is organized as follows. We examine the e
lution of sets of perturbed manifolds of period-one flip orb
©2003 The American Physical Society21-1
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from data from a simulation of a parametrically driven pe
dulum and extract the relevant local manifold model: tw
offset pairs of intersecting Mo¨bius bands. We then build
simple graphical tool that makes the dynamics near these
of offset Möbius bands transparent. Using the simplified p
ture of the dynamics near a flip saddle, we design a con
rule that uses only the stable dynamics of the local syst
and finally demonstrate the control on a chaotic pendulu

III. RESTRICTIONS, ASSUMPTIONS, AND
SIMPLIFICATIONS

For simplicity, we will consider only periodically forced
three-dimensional systems, so that the global flow will ha
a two-dimensional Poincare´ section SOSf(t) and a natural
fundamental periodT equal to that of the forcingf(t)
5f(t1T). Such a system lives naturally in a torusP3S1,
whereP is some phase space andS1 is a circle. Consider a

period-one orbitx̄(t)5 x̄(t1T) of such a system. As with al
local control methods, the important geometric elements

the unperturbed target orbitx̄ along with its stable and un

stable manifoldsWs ,Wu , and the perturbed target orbitx̄r(t)

along with its stable and unstable manifol
Ws„r(t)…,Wu„r(t)…. We assume the dynamics near the tar
orbit are linear so that at some reference Poincare´ section
SOS05SOSf(t0) , the unperturbed system is governed by

linear mapxi 115Axi , whereA is a 232 matrix andx5 x̂
2 x̄ for x̂ some orbit nearx̄. The perturbed system is gov
erned by the linear mapxi 112dr ig5A(xi2dr ig), where

dr i5r i2r0 is a small perturbation ofr andg5] x̄/]r. For
a linear system, the stable and unstable manifolds are
proximated by the stable and unstable eigenvectorses ,eu of
the matrixA, and for a flip saddle their associated eigenv
ues arelu,21,ls,0. The mapping in the surface of se
tion alternates sides of both the stable and unstable m
folds, as seen in the schematic of Fig. 1. For the f
continuous orbit, the system state will flow along the hyp
bolic leaves that foliate the crotch of the saddle, rotating
p each cycle of the orbit. Thus, as in the map, an orbit w
return to its original ‘‘quadrant’’ every two cycles.

FIG. 1. The dynamics of a saddle orbit at the surface of sec
(SOS)f(t) .
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IV. THE PENDULUM MODEL

Figure 2 shows the perturbed and unperturbed eigen
tors of a period-one flip orbit from a simulation of a vert
cally forced pendulum with damping at 16 Poincare´ phases
SOS0, . . . ,SOS15 and at three different damping levels. Th
equation of motion is

ü5ru̇1sinu„12a cos~vt !…,

wherer is velocity dependent damping,u is the angle mea-
sured counterclockwise from the straight down position, a
a is the amplitude of the forcing. In our experiment,a
51.2 andv51.5.

The phase space is periodic at the left and right sid
forming an annular or cylindrical phase space, and only
upper half phase plane is shown in Fig. 2. The orbit mo
from left to right. In each group of three, the middle man
folds are the unperturbed ones, with a damping levelr0
50.23 in dimensionless units of actual damping to sm
angle approximation critical damping. The left members
the trios are at an increased damping levelr50.25, and the
right members have a damping ofr50.21. In the fifth full
group of three from the left, the unstable manifolds a
aligned, and in the eleventh group of three, the stable m
folds are aligned. This alignment of the unstable and sta
manifolds is the heart of the method, and we will design
by tu and ts , respectively, the times at which these alig
ments take place. Due to the rotation byp of these manifolds
over the course of an orbit, the evolution of the system
continuous time takes place near a pair of intersecting M¨-
bius bands.

V. THE GEOMETRIC MODEL

To see more clearly the relation of the perturbed and
perturbed stable~or unstable! manifolds as pairs of Mo¨bius
bands, refer to Fig. 3, where we see the continuous evolu
of two Möbius bands representing a pair of stable~or un-
stable! manifolds of a perturbed and unperturbed perio
orbit. Figure 3 shows a pair of perturbed stable manifolds

n FIG. 2. Local stable and unstable manifolds of a period-o
over-the-top orbit of the pendulum at 16 Poincare´ sections for three
levels of damping,r50.21, r50.23, andr50.25. Each group of
three consists of an unperturbed orbit~center! and two perturba-
tions, corresponding to a greater or lesser damping. Units on
axes are in radians.
1-2
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the point at which the bands are most nearly collinear
cross section is labeledts .

In order to visualize our control strategy, we consider
coevolving perturbed and unperturbed systems. Most of
details of the perturbed manifold structure and the dynam
of nearby orbits are irrelevant to CR control. In particul
the size of the eigenvalues is not important, although a la
stable eigenvaluels will accelerate the convergence to th
target orbit once the control is turned off. Likewise, the sc
soring of the manifolds is unimportant, since the system s
once captured in the stable perturbed manifold will evolve
it and be unaffected by the unstable dynamics. Therefore
build a diagram with orthogonal manifolds, and a const
perturbation to get a simplified view of the dynamics of t
perturbed and unperturbed saddles.

The manifold diagram of Fig. 4 shows the dynamics fro
the reference frame of the unperturbed manifolds. The st
manifold is fixed on the horizontal axis, and we imagine th
the perturbed manifold structure orbits around it. This d
gram is equivalent to one with both centers fixed and side
side with the manifolds rotating around the centers like p
pellers~as we would get by straightening the orbit in Fig. 4!.
In the reference frame of one of the bands, the other b
makes an orbit every two fundamental system times,

FIG. 3. A pair of perturbed Mo¨bius bands. Because of the
identical torsion, they are always parallel to each other. At o
point, though, the bands are not just parallel, but they align as w
that is, their tangent planes are identical. The point at which
bands are most nearly aligned is labeledts . An orbit in the inner
band is shown transferring to the outer band atts .

FIG. 4. Local manifolds rotating about one another are equ
lent to manifolds that rotate about their centerlines but whose c
terlines are fixed relative to each other. The labels beneath the
ures refer to the distance around the torus that contains the attra
05622
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keeps the same orientation, i.e., the tangent vectors from
center manifold to the edges of the bands are almost para

VI. THE METHOD

As with all OGY derived schemes, we rely on the ergo
icity of the system to deliver a chaotic orbit to a controllab
region surrounding the target orbit. Once the system s
enters the controllable region, we perturb the system so
the system state lies in the stable manifold of the pertur
target orbit. From Fig. 3, it is apparent that any orbit lying
the stable manifold of the perturbed system will also lie
the~linear! stable manifold of the unperturbed system at tim
ts . We may capture the system state at any time other t
ts , since atts the perturbation shifts the target orbit sole
along the stable manifoldes . The timetu is a good choice,
because at this time the perturbation moves the target o
solely along the unstable manifold. Assuming thattu is our
capture time, our goal is to find adr that will perturb the
fixed pointx̄ at timetu by drg so that the system statex lies
in the perturbed stable manifoldx̄r5drg. This condition is
satisfied whenfu•(x2drg)50 or

dr5
fu•xn

fu•g
, ~1!

wherefu is a vector orthogonal to the stable eigenvectores .
If we apply this correctiondr, the phase point will be on the
perturbed stable manifold until the correction is turned off
ts . The system statex is now captured by the stable dynam
ics of the perturbed orbit. We leave the control on for a tim
t r5ts2tu until x lies in es , the stable manifold ofx̄. The
control is turned off and the system state is released intoes .
Again, refer to Fig. 3 to see the geometrical situation j
before and just after timets . The system will now evolve
along es to the target orbit. This process is illustrated di
grammatically in Fig. 5.

VII. DETERMINATION OF ts

Capture and Release control depends in a critical way
the time ts at which the perturbed and unperturbed sta
manifolds coincide, so it is important to be able to make t
determination. We assume that, as with OGY control, we
able to determine the perturbed and unperturbed local
namics near the periodic orbitx̄ to be stabilized by comput
ing the state transition matrixA for the local linear map
xi 115Axi . Then the eigenvectorses ,eu of A approximate
the local linear stable and unstable manifolds. Further
must be possible to turn off the control perturbation at tim
ts . There are several possible methods of making this de
mination, and we will mention them, but not go into to
much detail.

A. Determination from sampled data

Ideally, we would like to have a system in which it
possible to sample the data at any time during the period
the orbit to be stabilized. In our simulation, and also in o
physical pendulum system, we are able to take multi

e
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-
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Poincare´ sections and therefore, determine the timets from
inspection of relative positions of the perturbed and unp
turbed manifolds, or by minimizingfu•g over the linear
maps constructed at each Poincare´ section. Then, if neces
sary, we can further refine our estimate ofts by interpolation
between the two timests1 and ts2, the two times that mini-
mize fu•g. The ideal off timets is presumably between thes
two times. If necessary, new data could then be taken n
time ts and fu•g checked to see if it is small enough. I
practice, we found that visual data from the display shown
Fig. 2 was accurate enough.

B. Determination by the failure of OGY

OGY control depends on the dynamics in the unsta
direction pushing the system state onto the stable manifol
the target orbit. If the system of interest is continuous th
OGY control ~or any other chaos control method that us
the unstable dynamics of the system! will fail if it is applied
at a time ts when the perturbation moves the target or
entirely along the stable manifold. This condition mea
fu•g50, sodr5lu /(lu21)fs•x/(fs•g)5`, i.e., an infinite
perturbation is required. Therefore, if a unique timets can be
found for which OGY control is totally ineffective then tha
time will be the ideal off timets for CR.

C. Determination from a local model

If continuous data or closely spaced data from a cl
approach to the saddle is available, it is possible to mak
local model in the form of a Floquet solution. The method
building this model from data is the subject of a paper
preparation. The Floquet solution is the product of an ini
state vector and several time-varying matrices, one of wh
columns consist of the~time-varying! eigenvectors that de

FIG. 5. Control by capture and release. The system state e
the controllable region, and a control perturbation is made
places the stable manifold on the system state. The system
then evolves in the perturbed stable manifold, while the pertur
manifold structure orbits around the unperturbed orbit. At timets ,
the stable manifolds are collinear, and the control is turned
Thereafter, the system evolves toward the target orbit in the un
turbed stable manifold.
05622
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fine the local linear manifolds of the saddle. The off timets
can be found by solvingfu(t)•g(t)50 for t using Newton’s
method.

VIII. RELATIONSHIP OF CR TO OGY

The method of Ott, Grebogi, and Yorke aims to contro
system whose dynamics near a periodic orbitx̄ can be rep-
resented by a linear mapxi 115Axi . The system is con-
trolled by making a perturbationdr that places the system
state’s next iteratexi 11 in the stable manifoldes of x̄. This
condition is obtained whenfu•xi 1150, wherefu is perpen-
dicular to es . Therefore, the control rule for OGY is foun
by solving fu•xi 115fu•@A(xi2drg)1drg#50 for dr.

If we wished to place the system state on the stable m
fold after n iterates rather than one, we would solve

fu•xi 1n5fu•@An~xi2drg!1drg#50. ~2!

In order to solve the system, we make use of the follo
ing relations:

fu•eu5fs•es51,

fs•eu5fu•es50,

or

F fs
T

fu
TG @eseu#5F1 0

0 1G .
We can rewriteA as

A5@eues#Flu 0

0 ls
GF fu

T

fs
TG5@lsesfs

T1lueufu
T#.

An is therefore equal to

@eues#Flu
n 0

0 ls
nGF fu

T

fs
TG5@ls

nesfs
T1lu

neufu
T#,

and we have, upon solving Eq.~2!,

dr5
lu

n

lu
n21

fs•x

fs•g
.

If we take the limit asn→`, we get

dr5 lim
n→`

lu
n

lu
n21

fs•x

fs•g
5

fs•x

fs•g
,

which is the CR rule.
Geometrically, the effect of delaying OGY control is t

move the perturbed stable manifold closer to the current s
tem state, so that it takes longer for the state to get from n
the perturbed stable manifold to the unperturbed stable m
fold. As we delay OGY control longer and longer, the pe
turbed stable manifold is moved closer and closer to the c
rent system state, until, by delaying OGY contr
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t
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d
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indefinitely, we obtain the CR rule. If the perturbed and u
perturbed stable manifolds did not cross, as they do with
saddles, the captured system state could not be directe
the unperturbed stable manifold, and CR would not work

IX. CONTROL OF A CHAOTIC PENDULUM

The forced pendulum is a popular ‘‘test bed’’ for cha
control schemes@22–28#. We applied the method of captur
and release to our pendulum simulation and found it to
comparable to OGY control in terms of time to control a
robustness to modeling errors~see Fig. 6!. In this example,
OGY control was found to require about 60% more ‘‘e
ergy’’ than CR, where by energy we mean the integral of
perturbation over time. This was mainly due to CR cont
being off more than half the time by design. CR was found
be slightly more susceptible to instability due to noise th
OGY, temporarily losing control, on an average, about on
every 1000 iterates at a level of 0.1% additive noise,
level at which OGY is just able to keep uninterrupted co
trol.

X. SUMMARY

We have demonstrated a different control procedure
chaotic systems that relies in a fundamental way on the
ture of the flip orbit. This method does not use the unsta
dynamics of the system at all, but instead relies on the r
tive rotation of the perturbed and unperturbed stable m
folds to bring the system state to the stable manifold of
target orbit once it has been captured in the stable mani
et
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of a perturbed orbit. As with OGY control, the perturbation
removed once the stable manifold is attained, allowing
system state evolve in the stable manifold to the target or
The method of capture and release has been found to
robust, and uses less energy to control than OGY in the
tem we tested. Because the unstable dynamics are no
volved in the control, CR may be a good choice for syste
with a large unstable component.

FIG. 6. Control of a period-one over-the-top orbit of the pa
metrically forced pendulum by CR and OGY. Small modeling
rors have roughly the same effect on the nature of the contro
orbit for both OGY and CR.
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