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We propose and demonstrate a different method for the control of flip saddles in dissipative chaotic systems.
Due to the dynamics of a flip saddle, the stable manifolds of a target orbit and its perturbation can be modeled
as a pair of concentric Mous bands. Over the period of the target orbit, these bands rotate relative to one
another. The method of capture and rele@®) takes advantage of this rotation, and captures a nearby system
state in the perturbed stable manifold, releasing it when the rotation of theusbdands brings them into
alignment. Unlike the method of Ott, Grebogi, and Yorke and most of its variants, CR does not rely on the
unstable component of the flow to push the system state onto the stable manifold; the system state is evolving
in a stable subspace for the duration of the control perturbation.
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Since the 1990 paper of Ott, Grebogi, and YotkEGY)  perturbationsp would be proportional te. It is easy to see
[1] on model independent chaos control, numerous simplifithat time-delayed feedback relies on the alternating nature of
cations, variations, and extensions have appeared. Oves-flip orbit.
whelmingly, these methods rely on the expanding part of the |n contrast to the continuous parameter dependence of
dynamics to push a system state onto the stable manifold afme-delayed feedback on the distance from the system state
a target orbit, after which the contracting part draws it intoto the target state, OGY-type controls apply a fixed control
the target. The low-dimensional control scheme proposed berturbation based on the measurement of the system state at
Ott et al. spawned many variations. We now have controla surface of sectioSOS map. Most OGY-type controls are
methods for high-dimensional systefizs-4], spatiotemporal two-step processes. In the first step, the system state is di-
systemg[5-7], systems using time-delay coordinaf@9],  rected to the stable manifold of the target orbit using the
systems with multiple parametefr$0,11], and systems with  unstable dynamics of a perturbation. In the second step, the
no accessible control paramefé®,13. Most of these meth- controller is turned off and the system state evolves under the
ods will work for simple saddleseigenvalues greater than stable dynamics to the target. Whereas time-delayed feed-
zerg and flip saddlegeigenvalues less than zerén inter-  back controls, like other OGY variants, rely on the dynamics
esting subclass of these controllers relies on the nature of thsf the unstable direction to nudge the system state onto the
flip saddle for their success. Because of thebMis band target orbit or its stable manifold, the method we propose,
structure of the manifolds associated with a flip saddle, theapture and releaséCR), uses only the relative rotation of
relationship of the perturbed and unperturbed manifolds durthe stable manifolds of the perturbed and unperturbed orbits
ing the course of an orbit is more complicated than that of as the initial step to gain control.
simple saddle.

Control methods relying on the nature of the flip saddle
dynamics are for the most part realized in continuous time
systems, and have been very successful in controlling physi-
cal systemg14—16, especially those where a model is un- Flip orbits are continuous periodic saddle orbits whose
available and the location of periodic orbits is unknown.local stable and unstable manifolds have an odd number of
Pyragaq17] proposed a methodime-delayed autosynchro- twists, so that at the surface of section the system state flips
nization for continuous systems that synchronized the curfrom one side to another of the stable and unstable mani-
rent state with the state delayed by one period, and Socold@lds. For a period-one orbit, these manifolds arebiMs
et al.[18] improved on this method by including information bands. While in the strictest sense abiles band isl X S,
about the system state over several previous cyelgended an interval crossed with a circle with a half twist, this
time-delayed autosynchronizatioriThe general method is method will work (with obvious modificationson systems
known as time-delayed feedbafko—21]. whose saddles have manifolds with one-half twist or more.

A phase-space picture of a system state in the neighborthus, nonflip saddle orbits whose manifolds undergo an even
hood of a flip orbit would reveal a roughly spiral path both number of twists can also be controlled by our method. In
approaching and departing the area of the saddle. Thereforlis paper, however, all the analysis and control will be done
the distances between a system staxét) at timet and the ~ On @ period-one flip orbit.
statex(t—T) at timet—T, whereT is the period of the target
orbit, will dec'rease or ingrease depending on vyhether the Il ORGANIZATION OF THE PAPER
system state is approaching or departing the neighborhood.

An effective controller should decrease the level of perturba- This paper is organized as follows. We examine the evo-
tion as this distance diminishes, so we expect that the contrdlition of sets of perturbed manifolds of period-one flip orbits

I. BASIC GEOMETRY OF FLIP SADDLES
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FIG. 1. The dynamics of a saddle orbit at the surface of section FIG. 2. Local stable and unstable manifolds of a period-one
(SOS) (s - over-the-top orbit of the pendulum at 16 Poincaeetions for three
levels of dampingp=0.21, p=0.23, andp=0.25. Each group of

f data f imulati f trically dri three consists of an unperturbed orfentej and two perturba-
rom data from a simufation or a parametrically driven pen'tions, corresponding to a greater or lesser damping. Units on the

dulum and extract the relevant local manifold model: twogyes are in radians.

offset pairs of intersecting Mmus bands. We then build a

simple graphical tool that makes the dynamics near these sets IV. THE PENDULUM MODEL

of offset Mabius bands transparent. Using the simplified pic- ) )

ture of the dynamics near a flip saddle, we design a control "19uré 2 shows the perturbed and unperturbed eigenvec-

; f a period-one flip orbit from a simulation of a verti-
rule that uses only the stable dynamics of the local systerr"fOrs 0 ) . .
' . cally forced pendulum with damping at 16 Poincateases
and finally demonstrate the control on a chaotic pendulum.SO%’ .. S0Ssand at three different damping levels. The

equation of motion is

IIl. RESTRICTIONS, ASSUMPTIONS, AND
SIMPLIFICATIONS

For simplicity, we will consider only periodically forced wherep is velocity dgpendent dampir]g,is the anglg mea-
three-dimensional systems, so that the global flow will havesur_ed counterc_lockW|se from the_ straight down position, and
a two-dimensional Poincarsection SO and a natural a is the amplitude of the forcing. In our experiment,

. ) =1.2 andw=1.5.
fundamental periodT equal to that of the forcingp(t) . - . .
— 4(1+T). Such a system lives naturally in a torBs< S, The phase space is periodic at the left and right sides,

h . h 4 el id forming an annular or cylindrical phase space, and only the
whereP is some phase space aBdis a circle. Consider a , ner half phase plane is shown in Fig. 2. The orbit moves

period-one orbik(t) =x(t+T) of such a system. As with all from left to right. In each group of three, the middle mani-
local control methods, the important geometric elements argplds are the unperturbed ones, with a damping lgwgl
the unperturbed target orbit along with its stable and un- =0.23 in dimensionless units of actual damping to small
stable manifold&\Vg, W, , and the perturbed target orbij, angle_ apprOX|mat|o_n critical damplng. The left members of
the trios are at an increased damping lewel0.25, and the

along with its stable and unstable manifolds . . X
We(p(t)), W, (p(t)). We assume the dynamics near the targe{lght members have a damping pf£0.21. In the fifth full

orbit are linear so that at some reference Poin ion droup of three from the left, the unstable manifolds are

- : aligned, and in the eleventh group of three, the stable mani-
SOQ_SO%UO)’ the unperturbed system is governed Aby Aolds are aligned. This alignment of the unstable and stable

linear mapx;.;=Ax;, whereA is a 22 matrix andx=x  manifolds is the heart of the method, and we will designate
—x for x some orbit neax. The perturbed system is gov- by t, andtg, respectively, the times at which these align-
erned by the linear map; . ;— 8p;g=A(x;— dp;g), where  ments take place. Due to the rotationbyf these manifolds

8pi=pi— po is a small perturbation g andg= agap_ For over the course of an orbit, the evolution of the system in

a linear system, the stable and unstable manifolds are a __ontinuous time takes place near a pair of intersecting Mo

proximated by the stable and unstable eigenveagrs, of ius bands.
the matrixA, and for a flip saddle their associated eigenval-

ues are\ ;< —1<A4<0. The mapping in the surface of sec-

tiOI’I alternates SideS Of bOth the Stable and unS'[able mani' To see more C|ear|y the relation of the perturbed and un-
folds, as seen in the schematic of Fig. 1. For the fullperturbed stabléor unstablg manifolds as pairs of Muius
continuous orbit, the system state will flow along the hyper-hands, refer to Fig. 3, where we see the continuous evolution
bolic leaves that foliate the crotch of the saddle, rotating byof two Mobius bands representing a pair of stabbe un-

7 each cycle of the orbit. Thus, as in the map, an orbit willstable manifolds of a perturbed and unperturbed periodic
return to its original “quadrant” every two cycles. orbit. Figure 3 shows a pair of perturbed stable manifolds, so

6=p6+sin6(1— a coq wt)),

V. THE GEOMETRIC MODEL
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keeps the same orientation, i.e., the tangent vectors from the
center manifold to the edges of the bands are almost parallel.

VI. THE METHOD

As with all OGY derived schemes, we rely on the ergod-
icity of the system to deliver a chaotic orbit to a controllable
region surrounding the target orbit. Once the system state
enters the controllable region, we perturb the system so that
the system state lies in the stable manifold of the perturbed
target orbit. From Fig. 3, it is apparent that any orbit lying in
the stable manifold of the perturbed system will also lie in
the (linean stable manifold of the unperturbed system at time
ts. We may capture the system state at any time other than
tg, since attg the perturbation shifts the target orbit solely

FIG. 3. A pair of perturbed Moius bands. Because of their along the stable manifold;. The timet, is a good choice,
identical torsion, they are always parallel to each other. At onebecause at this time the perturbation moves the target orbit
point, though, the bands are not just parallel, but they align as wellsolely along the unstable manifold. Assuming thats our
that is, their tangent planes are identical. The point at which thesapture time, our goal is to find 8p that will perturb the

bands are most nearly aligned is labeted An orbit in the inner fixed pointx at timet, by dpg so that the system stadlies

band is shown transferring to the outer bandgat . ) ) .
g s in the perturbed stable manifold,= 5pg. This condition is

] ] . _ satisfied wherf,- (x— dpg) =0 or
the point at which the bands are most nearly collinear in

cross section is labeledq. _fuxq

In order to visualize our control strategy, we consider the op= f,-g’ @
coevolving perturbed and unperturbed systems. Most of the
details of the perturbed manifold structure and the dynamic¥/herefy is a vector orthogonal to the stable eigenveetor
of nearby orbits are irrelevant to CR control. In particular, !f We apply this correctiorp, the phase point will be on the
the size of the eigenvalues is not important, although a |argé?erturbed stable manllfold until the correction is turned off at
stable eigenvalua will accelerate the convergence to the 's- The System state is now captured by the stable dynam-
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target orbit once the control is turned off. Likewise, the scis-'®> of the perturbed orbit. We leave the control on for a time
soring of the manifolds is unimportant, since the system stath =ts—ty until x lies in e, the stable manifold ok. The
once captured in the stable perturbed manifold will evolve incontrol is turned off and the system state is releasedento

it and be unaffected by the unstable dynamics. Therefore, wAgain, refer to Fig. 3 to see the geometrical situation just
build a diagram with orthogonal manifolds, and a constanPefore and just after timé. The system will now evolve
perturbation to get a simplified view of the dynamics of the@long & to the target orbit. This process is illustrated dia-

perturbed and unperturbed saddles. grammatically in Fig. 5.
The manifold diagram of Fig. 4 shows the dynamics from
the reference frame of the unperturbed manifolds. The stable VII. DETERMINATION OF  t4

tmhzng((a):?ulri(felger?]:;]ifg}g rsl?rﬁi?gsglmi’sa;rgmed”i?a%r;s g::t Capture and Release control depends in a critical way on
gram is equivalent to one with both centers fixed énd side bthe t_imets at W.hiCh th_e _pe_rturbed and unperturbed stab!e
side with the manifolds rotating around the centers like pro- ameI.dS gommde, SO itis important to be able to make this

g . . determination. We assume that, as with OGY control, we are
pellers(as we would get by straightening the orbit in Fig. 4

In the reference frame of one of the bands, the other ban%bIe to determine the perturbed and unperturbed local dy-

makes an orbit every two fundamental system times, anfiamics near the periodic orbitto be stabilized by comput-
ing the state transition matriA for the local linear map

Xi+1=AX;. Then the eigenvectors;,e, of A approximate

T T the local linear stable and unstable manifolds. Further, it
s T T must be possible to turn off the control perturbation at time
f’ ) i’ R }/ \ ts. There are several possible methods of making this deter-
> /4 ’A(‘ 4 ’ j‘ mination, and we will mention them, but not go into too
\KJJ u%,// > ¥ much detail.
Ox ks v 2T

A. Determination from sampled data

FIG. 4. Local manifolds rotating about one another are equiva- Ideally, we would like to have a system in which it is
lent to manifolds that rotate about their centerlines but whose cenpossible to sample the data at any time during the period of
terlines are fixed relative to each other. The labels beneath the fighe orbit to be stabilized. In our simulation, and also in our
ures refer to the distance around the torus that contains the attractg@hysical pendulum system, we are able to take multiple
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fine the local linear manifolds of the saddle. The off tilge
can be found by solving,(t)-g(t)=0 for t using Newton’s
method.

VIIl. RELATIONSHIP OF CR TO OGY

JOHN STARRETT PHYSICAL REVIEW B57, 056221 (2003
The method of Ott, Grebogi, and Yorke aims to control a
system whose dynamics near a periodic orbdtan be rep-

+ 4’%“
v
off on
resented by a linear mag,;=Ax;. The system is con-
4 trolled by making a perturbatiofp that places the_ system
state’s next iterate; . ; in the stable manifola of x. This
¢ condition is obtained whefy,-x; . 1=0, wheref, is perpen-
. dicular toe;. Therefore, the control rule for OGY is found
A - o by solvingf,- X, 1=f,- [A(X;— 6pg) + pg]=0 for Sp.
on [ (o)

If we wished to place the system state on the stable mani-

FIG. 5. Control by capture and release. The system state entef8ld aftern iterates rather than one, we would solve
the controllable region, and a control perturbation is made that _ n _
places the stable manifold on the system state. The system state furXi+n =Ty [A(Xi— 5pg) + 5pg] = 0. @
then evolves in the perturbed stable manifold, while the perturbed
manifold structure orbits around the unperturbed orbit. At tiqie
the stable manifolds are collinear, and the control is turned off.
Thereafter, the sys_tem evolves toward the target orbit in the unper- f,-e,=fse=1,
turbed stable manifold.

In order to solve the system, we make use of the follow-
ing relations:

fs-e,=fu-&=0,
Poincaresections and therefore, determine the tipérom
inspection of relative positions of the perturbed and unperpr
turbed manifolds, or by minimizindg,-g over the linear £
maps constructed at each Poincaegtion. Then, if neces- { S
sary, we can further refine our estimatetoby interpolation
between the two timek+ andts-, the two times that mini-
mizef,-g. The ideal off timetg is presumably between these

1 0
fI [eseu]:[o ]J-

We can rewriteA as

two times. If necessary, new data could then be taken near Ay O fI
time t, and f,-g checked to see if it is small enough. In A=[e&] 0l =[Asasfl+Nafl]-
practice, we found that visual data from the display shown in sil's
B. Determination by the failure of OGY )\E fI e T4\ T
. =[A\ +A ,
OGY control depends on the dynamics in the unstable Lees] 0 AD|f] [hsafs+Auat]

direction pushing the system state onto the stable manifold of

the target orbit. If the system of interest is continuous therand we have, upon solving E(®),

OGY control (or any other chaos control method that uses

the unstable dynamics of the systewill fail if it is applied Ay fex

at a timetg; when the perturbation moves the target orbit op= AN—1 @
entirely along the stable manifold. This condition means Y

fu-9=0, sodp=N,/(Ay—D)fs-X/(fs-g) =2, i.e., aninfinite  |f we take the limit asn— o, we get
perturbation is required. Therefore, if a unique tilpean be

found for which OGY control is totally ineffective then that N fex fex

time will be the ideal off timet, for CR. dp=lim = ,
s p n—oo )\3_1 fsg fsg

C. Determination from a local model which is the CR rule.

If continuous data or closely spaced data from a close Geometrically, the effect of delaying OGY control is to
approach to the saddle is available, it is possible to make move the perturbed stable manifold closer to the current sys-
local model in the form of a Floquet solution. The method oftem state, so that it takes longer for the state to get from near
building this model from data is the subject of a paper inthe perturbed stable manifold to the unperturbed stable mani-
preparation. The Floquet solution is the product of an initialfold. As we delay OGY control longer and longer, the per-
state vector and several time-varying matrices, one of whoseirbed stable manifold is moved closer and closer to the cur-
columns consist of thétime-varying eigenvectors that de- rent system state, until, by delaying OGY control
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indefinitely, we obtain the CR rule. If the perturbed and un-
perturbed stable manifolds did not cross, as they do with flip
saddles, the captured system state could not be directed to
the unperturbed stable manifold, and CR would not work.

IX. CONTROL OF A CHAOTIC PENDULUM

The forced pendulum is a popular “test bed” for chaos
control schemef22—-28. We applied the method of capture
and release to our pendulum simulation and found it to be
comparable to OGY control in terms of time to control and
robustness to modeling errofsee Fig. 6. In this example,

OGY control was found to require about 60% more “en- o024 —

ergy” than CR, where by energy we mean the integral of the CR -0GY .
perturbation over time. This was mainly due to CR control P—=—— TR
being off more than half the time by design. CR was found to - ‘ ~

be slightly more susceptible to instability due to noise than 0 iterates 4000

OGY, temporarily losing control, on an average, about once . )
every 1000 iterates at a level of 0.1% additive noise, the FIG. 6. Control of a period-one over-the-top orbit of the para-

level at which OGY is just able to keep uninterrupted con-metrically forced pendulum by CR and OGY. Small modeling er-
trol. rors have roughly the same effect on the nature of the controlled

orbit for both OGY and CR.
X. SUMMARY of a perturbed orbit. As with OGY control, the perturbation is

We have demonstrated a different control procedure foremoved once the stable manifold is attained, allowing the
chaotic systems that relies in a fundamental way on the nasystem state evolve in the stable manifold to the target orbit.
ture of the flip orbit. This method does not use the unstabl&he method of capture and release has been found to be
dynamics of the system at all, but instead relies on the relarobust, and uses less energy to control than OGY in the sys-
tive rotation of the perturbed and unperturbed stable manitem we tested. Because the unstable dynamics are not in-
folds to bring the system state to the stable manifold of thesolved in the control, CR may be a good choice for systems
target orbit once it has been captured in the stable manifoldith a large unstable component.

[1] C. Grebogi, E. Ott, and J.A. Yorke, Phys. Rev. Letl, 1 Phys. Rev. Lett68, 1259(1992.
(1990. [15] M.E. Bleich and J.E.S. Socolar, Phys. Revb& 17 (1996.

[2] D. Auerbach, C. Grebogi, E. Ott, and J. Yorke, Phys. Rev. Lett[16] E.R. Hunt, Phys. Rev. Let67, 1953(1991).
69, 3479(1992. [17] K. Pyragas, Phys. Lett. A70 421 (1992.

[3] M. Yang, W. Ding, V. In, W.L. Ditto, M.L. Spano, and B. [18] J.E.S. Socolar, D.W. Sukow, and D.J. Gauthier, Phys. Rev. E
Gluckman, Phys. Rev. B3, 4334(1996. 50, 3245(1994).

[4] D.L. Hill, Int. J. Bifurcation Chaos Appl. Sci. Endll, 1753  [19] C. Batlle, E. Fossas, and G. Olivar, Int. J. Circuit Theory Appl.
(2001. 27, 617 (1999.

[5] I. Aranson, J. Levine, and L. Tsimring, Phys. Rev. L&, [20] M.E. Brandt and G.R. Chen, Int. J. Bifurcation Chaos Appl.
2561 (1994). Sci. Eng.10, 2781(2000.

[6] G. Hu, Z. Qu, and K. He, Int. J. Bifurcation Chaos Appl. Sci. [21] W. Just, in Handbook of Chaos Controledited by H.G.
Eng.5, 901 (1995. Schuster(Wiley-VCh, New York, 1999.

[7] C. Lourenco, M. Hougardy, and A. Babloyantz, Phys. Rev. E[22] G.L. Baker, Am. J. Phys53, 832(1995.
52, 1528(1995. [23] B. Hubinger, R. Doerner, and W. Martienssen, Z. Phys. B:

[8] U. Dressler and G. Nitsche, Phys. Rev. L&®&, 1 (1992. Condens. Matte®0, 103 (1993.

[9] J. Alvarez-Rantez, R. Femat, and J. Gorlea, Phys. Lett. A [24] S.R. Bishop and D. Xu, J. Sound Vih94, 287 (1996.
211, 41(1996. [25] R.J. de Korte, J.C. Schouten, and C.M. van den Bleek, Phys.

[10] E. Barreto and C. Grebogi, Phys. Rev5E 3553(1995. Rev. E52, 3358(1995.

[11] J. Warncke, M. Bauer, and W. Martienssen, Europhys. P&t.  [26] N.J. Corron, S.D. Pethel, and B.A. Hopper, Phys. Rev. Lett.
323 (1994. 84, 3835(2000.

[12] A. Garfinkel, M.L. Spano, W.L. Ditto, and J.N. Weiss, Science [27] Z.H. Guan, G.R. Chen, and T. Ueta, IEEE Trans. Autom. Con-
(Washington, DC, U.$.257, 1230(1992). trol 45, 1724(2000.

[13] D.J. Christini and J.J. Collins, Phys. Rev5B, R49 (1996. [28] K. Yagasaki and T. Uozumi, Int. J. Bifurcation Chaos Appl.

[14] R. Roy, T.D. Murphy, Jr., T.D. Maier, Z. Gills, and E.R. Hunt, Sci. Eng.7, 2827(1997.

056221-5



